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Abstract. The travelling repairman problem (TRP) is a scheduling
problem in which a repairman must visit locations to perform some task.
Each location has a time window in which the repairman is allowed to
arrive. The objective of this problem is to maximize the number of tasks
performed. In this paper, we consider a special case in which all the
locations are on a straight line, the tasks have no processing time, and
all time-windows are of unit length. We present an improvement on the
analysis of the 4-approximation algorithm presented by S. L. Pérez Pérez
et al. in 2014.
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1 Introduction

In the travelling repairman problem (TRP), we are given a set of locations the
repairman can visit and the time needed to travel between any pair of locations.
Each location has a set of tasks to be done by the repairman; each with a fixed
processing time and a time-window during which the repairman is allowed to
arrive at the location to perform that task. The objective of the problem is to
find the route which maximizes the number of tasks completed by the repairman.

In 1992, J. Tsitsiklis [5] proved that deciding whether the repairman can
complete k tasks within their time-windows is NP-complete, even if the tasks
have no processing time.

In 2005, R. Bar-Yehuda, et al. [1] considered the special case in which all
location are on a line, there are no processing times, and all time-windows are
of unit length. They proposed an 8-approximation algorithm with running time
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O(n2). This algorithm has the disadvantage of double-counting some of the tasks
performed. Therefore, they also propose a (4+ε)-approximation algorithm which
avoids double-counting but has computational cost O(n8/ε). It is worth noting
that the computational complexity of this special case is unknown.

In 2012, G. Frederickson and B. Wittman [2] showed that the TRP with unit
time-windows on a tree is NP-hard. Also, in [2], they propose a 3-approximation
algorithm for that case with running time O(n4). This result has a better
approximation factor than the algorithm proposed by R. Bar-Yehuda et al. but
has a high computational cost.

In 2014, S. L. Pérez Pérez et al. present a 4-approximation algorithm for
the TRP with unit time-windows on a line. The algorithm is based on the
algorithm of R. Bar-Yehuda et al. [1], and improves the computational cost
to O(n2). The algorithm is also faster and simpler than the algorithm proposed
by G. Frederickson and B. Wittman [2].

In this paper, we give a different analysis to the algorithm proposed by
S. L. Pérez Pérez et al. [3] and show its approximation factor is 3. In Section 2
we formally describe the problem. In Section 3 we present the O(n2) algorithm
by R. Bar-Yehuda et al. [1] for the TRP with unit time-windows on a line. In
Section 4 we present the algorithm by S. L. Pérez Pérez et al. [3] and give our
analysis for the algorithm improving its approximation factor.

2 Preliminaries

We define the travelling repairman problem with time windows (TRP-TW) as
follows.

Definition 1. Let (X, d) be a metric space where X is a set of points and d :
X ×X → R+ is a metric. We are given:

– a starting point x0 ∈ X.
– a set of locations V = {x1, x2, . . . , xn}, where xi ∈ X for all i ∈ {1, . . . , n},
– a set of non-negative processing times {t0 = 0, t1, t2, . . . , tn},
– a set of profits {p0 = 0, p1, p2, . . . , pn},
– a set of time windows {[`i, ui] : 0 ≤ `i ≤ ui, i ∈ {1, 2, . . . , n}}

The objective is to find a route x0r1r2 . . . rk maximizing
∑k
i=1 piri such that

ri ∈ V for all i ∈ {1, 2, . . . , k} and `i ≤
∑j
i=1 d(ri−1, ri) + ti−1 ≤ ui for all

j ∈ {1, 2, . . . , k}.

The set of locations V represent tasks to be performed by the repairman. Note
that a point in (X, d) can have multiple locations associated if there are multiple
tasks to be performed there. The time-windows give the time span during which
the repairman is allowed to arrive to a location for a task.

We consider a special case (Line-TRP-UTW) where X is a line, all processing
times are 0, all profits are 1, and all time windows are unitary (ui − `i = 1 for
all i ∈ {1, 2, . . . , n}).
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3 8-approximation Algorithm for Line-TRP-UTW

We describe the algorithm proposed by R. Bar-Yehuda et al. [1]. First, the
position of each location in V and the time window of the associated task on
the position vs time plane. In this representation, each task becomes a vertical
line segment of unit length. Note that a curve C on the plane will be a feasible
route if and only if it is monotone with respect to time and the tangents to any
point on C have angle between 45 and 135 degrees.

Then, the plane is rotated clockwise 45 degrees. Because of this, the represen-
tations of the tasks become line segments of length 1 with slope of 45 degrees. and
a curve C on the plane is a feasible route if and only if it is monotone with respect
to both axes. The Line-TRP-UTW is then equivalent to finding a monotone curve
on this plane maximizing the number of intersected line segments.

Afterwards, we overlay a (finite) grid with square size 1/
√

2 on the plane such
that it does not intersect the extreme point of any of the slanted line segments
and all slanted segments lie inside the grid. Note that every slanted segment will
intersect the grid at exactly one horizontal line and one vertical line. We then
transform the grid to a directed acyclic graph (DAG) Ḡ = (V,A) by setting all
the intersections of grid lines as vertices and orienting all the horizontal edges
rightwards and all the vertical edges upwards. Finally, we associate a weight w(a)
to every arc a ∈ A corresponding to the number of line segments intersecting
that arc.

The size of Ḡ is polynomial in max{ui : i ∈ {1, . . . , n}} − min{ui : i ∈
{1, . . . , n}} and max{xi, i ∈ {0, 1, . . . , n}} − min{xi, i ∈ {0, 1, . . . , n}} but it is
not strongly polynomial in the size of the input. However, it is possible to reduce
the grid to a strongly polynomial size.

Theorem 1. The DAG Ḡ = (V,A) can be reduced in polynomial time to a DAG
G of size 3n× 3n.

Proof. We will construct the DAG G by generating at most 3n columns and 3n
rows. Consider the endpoints of the n slanted line segments given by (xi, yi) and
(xi + 1, yi + 1). Order the segments in increasing x-order in O(n log n) time. For
each 1 ≤ i ≤ n, add columns labeled bxic, bxic + 1, and bxic + 2. Repeat this
process on the y coordinate, adding at most 3n rows, and yielding a grid of size
at most 3n× 3n. Note that no slanted lines intersected any of the removed arcs
and therefore any curve in the reduced grid can be mapped to a curve in the
original grid intersecting the same number of slanted segments. ut

Finally, we use the longest path algorithm on G to find a curve C over the
grid lines intersecting the most slanted segments. This route is feasible for the
repairman and can be computed in O(n2) time by using dynamic programming
[4, pp. 661-666].

In Figure 1 we show an example of the reduced DAG G with the slanted task
segments and associated arc weights (left) as well as the solution corresponding
to the longest path on G.
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Fig. 1. Example of a reduced DAG G with the slanted segments and arc weights (left).
The monotone curve attaining maximum weight on G (right).

Theorem 2 (Bar-Yehuda, Even, Shahar). The described algorithm has ap-
proximation factor 8.

The proof of Theorem 2 can be found in [1]

4 3-approximation Algorithm for Line-TRP-UTW

The algorithm described in Section 3 sometimes counts slanted segments twice.
For example the solution of the example given in 1 gives a route of weight 5
but only intersects 3 slanted segments. S. L. Pérez Pérez et al. [3] proposed
a modification to the algorithm which eliminates double counting, which we
describe briefly.

We take the reduced DAG G and build an auxiliary DAG G′ as follows:

1. We create a vertex for each horizontal arc in G and denote the set of all such
vertices as Vh. Similarly, we obtain Vv from the vertical arcs in G.

2. We add an arc joining two vertices in Vh rightwards if the corresponding
arcs were adjacent in G and call the set of all such arcs Ah. Analogously, we
obtain Av from joining vertices in Vv.

3. We add an arc from a vertex in Vh to a vertex in Vv if the corresponding arcs
were adjacent in G and call the set of these arcs Ahv. Likewise, we obtain
Avh from arcs from a vertex in Vv to a vertex in Vh.

Then G′ = (Vh ∪Vv, Ah ∪Av ∪Ahv ∪Avh). A section of G′ is shown in Figure 2.

Lemma 1. G′ can be constructed in O(n2) time.

Proof. By Theorem 1, the grid G has at most 9n2 vertices and every vertex has
out-degree 2. Therefore, |V (G′)| = |A(G)| = 18n2. Every vertex in V (G′) also
has out-degree at most 2, so A(G′) ≤ 36n2. Assuming the creation of vertices
and edges take constant time, constructing G takes O(n2) steps. ut
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Fig. 2. A section of G′: vertices of Vh are triangles and vertices of Vv are squares. The
edges that get weight 1 when a double counting slanted segment intersects the original
grid are highlighted.

The new algorithm then becomes:

1. We create the auxiliary DAG G′ in O(n2) time.
2. We assign the appropriate weights to each arc in A(G′) in O(n2) time.
3. We compute the longest path in G′ by dynamic programming in O(|V (G′)+
A(G′)) ∈ O(n2) time.

In [3], S. L. Pérez Pérez et al. showed that this algorithm avoids the problem
with double counting and has approximation factor 4. Its running time is O(n2).

4.1 Our Analysis of the New Algorithm

We start by giving an alternate proof that the new algorithm has approximation
factor 4.

Lemma 2. The new algorithm has approximation factor 4.

Proof. Let P be the optimal route and let zOPT be its cost. P can be covered
by horizontal and vertical blocks on the grid as shown in Figure 4.1. Consider
the four periodic routes r1, r2, r3, r4 show in Figure 4.1, with costs z1, z2, z3, z4
respectively, and the solution of the new algorithm A with cost zA. Note that
r1, r2, r3, r4 are all feasible paths forG′ and together they intersect all edges inter-
sected by P at least once. Therefore, zA ≥ max{z1, z2, z3, z4} ≥ z1+z2+z3+z4

4 ≥
zOPT

4 ut

We use a similar idea to show that the approximation factor is at most 3.

Lemma 3. The new algorithm has approximation factor 3.

Proof. Let P be the optimal route and let zOPT be its cost. P can be covered by
horizontal and vertical blocks on the grid as shown in Figure 4.1. Consider the
three periodic routes r1, r2, r3 show in Figure 4.1, with costs z1, z2, z3 respec-
tively, and the solution of the new algorithm A with cost zA. Note that r1, r2, r3
are all feasible paths for G′ and together they intersect all edges intersected by
P at least once. Therefore, zA ≥ max{z1, z2, z3} ≥ z1+z2+z3

3 ≥ zOPT

3 ut
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Fig. 3. Block cover of an optimal solution and the four periodic routes.

Fig. 4. Block cover of an optimal solution and the three periodic routes.
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